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Abstract—The ability to predict the behavior of cars that are
parked in an urban area can be very useful to the development
of vehicular networks that leverage these parked cars. In this
paper, we analyze the mobility patterns of people living in US
cities who use cars as their primary means of transportation.
We process and analyze survey data from the metropolitan areas
of Atlanta, Chicago, and Knoxville, to extract statistics on the
parking behaviors of individual cars.

We accompany our study with a synopsis of how parked
cars are being leveraged in urban vehicular networks, and show
possible use cases for fine-grained parking models. We then
provide daily and hourly analytical models of parking events,
along with useful derivations of key parking statistics.

The data we present in this study conclusively shows that park-
ing events can be classified into two major, clearly-identifiable
groups according to the time cars spend parked; that each group
is modeled by distinct distributions of probability; that these
patterns vary substantially throughout the day and, therefore,
are better modeled through time-evolving processes; and finally,
that these trends are very similar among different cities.

Index Terms—Urban Transportation, Urban Parking, Travel
Surveys, Vehicular Ad-Hoc Networks.

I. INTRODUCTION

Regional travel surveys have been commissioned by city
transportation committees from as early as 1965 [1]. These
surveys consist of randomly-sampled person-to-person inter-
views that inquire about a person’s travels in a specific date,
collecting departure and arrival times, locations, and means of
transportation, among others. Earlier surveys consisted of in-
person interviews – nowadays, Computer-Assisted Telephone
Interviews (CATI) are standard.

Studies that make use of these travel surveys are often
tailored towards the development of urban parking spaces and
parking lots [2], and so data is aggregated in metrics such as
parking spot occupation throughout the day. While this gives
us a broad picture of how parking spaces are used, it does not
let us infer the parking behavior of each individual car.

In this study, using data from recent travel surveys, we draw
statistics on how single cars park in urban areas. These statis-
tics are of particular use to vehicular urban network research.
Recent studies have brought forth the idea of leveraging parked
cars as active nodes in an urban network, increasing network
connectivity [3], relaying messages across intersections [4],
and acting as supporting Road-Side Units [5]. So while the
potential for parked cars in these networks seems clear, a
number of pitfalls need to be addressed as well – for example,

the electronics that enable the network must run limited by
the power available from the car’s battery, and cars can vacate
their spots and become mobile at any time.

With this paper, we provide a probabilistic view of how
individual cars park, allowing for informed decisions to be
made concerning these cars. Specifically, we analyze how
total time parked is distributed, how parking behaviors evolve
throughout the day, and how these trends differ from one city
to another. We then show how parking time can be accurately
modeled through a dual Gamma stochastic process, to char-
acterize distinct short-term and long-term parking behaviors,
and provide derivations for estimating parking duration and
remaining parking time of individual cars.

The remainder of this paper is organized as follows. First,
in Section II, we summarize recent work on leveraging parked
cars in urban networks, and show how the data in this
study can be used to improve the network. An overview of
urban travel surveys is then given in Section III. Section IV
draws initial observations on the data; then, an hour-by-hour
breakdown of parking trends is given, in Section V. Section VI
introduces a probabilistic model of parking behavior, along
with derivations of key parking statistics, and details how the
survey data was used to fit the model. Finally, concluding
remarks are presented in Section VII.

II. APPLICATIONS IN VEHICULAR NETWORKS

Research has shown that parked cars can be leveraged to
improve urban vehicular networks, simply by activating the
radios in these otherwise unused entities. For example, in [3],
a 3.3x improvement in node density is seen when 10% of all
parked cars are activated; [4] suggests using parked cars to act
as relays between vehicles whose line of sight is blocked by
urban buildings, resulting in nearby emergency messages being
delivered up to 17 seconds faster; and [6] shows how parked
cars can be used to assist content downloading, by caching
content from nearby Road-Side Units (RSUs). Our own work
in [5] shows how parked cars can be a powerful and capable
substitute to expensive deployments of urban Road-Side Units.

A support network that consists of parked cars will necessar-
ily require some degree of self-organization, as cars park and
unpark often and unpredictably. When selecting a parked car
for a specific role in the network, with the models presented
in this paper one is able to prioritize cars that are statistically



more likely to stay parked for longer, so the chosen car can
fullfil its role for longer as well.

Another concern with this approach is that power consump-
tion of the radio electronics must be kept in check, in order not
to risk draining the car’s battery (that is also needed to start
the engine). In this context, a system to rotate the supporting
roles in the vehicular network among nearby parked cars can
be implemented. Using the models in this work, an algorithm
can rotate roles among cars based on how long each car is
likely to remain parked, and how much of its battery is left.

In general, we believe that most systems that leverage
parked cars will benefit by taking into consideration the
statistics presented in this work.

III. DATA SOURCES

Performing a metropolitan travel survey demands a substan-
tial amount of work and logistics, along with adequate funding
to employ interviewers and collect data on a household-
by-household basis. Figure 1 shows the number of surveys
performed in the USA, from 1965 to date. The 1990s and
2000s saw a significant growth in the number of surveys
performed per year, which has then since declined.
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Figure 1. Histogram of travel surveys conducted by metropolitan areas, states
and localities of the United States over the past 50 years.

In this work, we analyze data from three specific surveys –
they are: Atlanta 2011 [7], Knoxville 2008 [8], and Chicago
2007 [9]. In order to draw statistics that reflect modern parking
trends, we specifically select surveys that are no older than 10
years, from medium- and large-sized urban areas. At the time
of this writing, these were the surveys we were able to locate
that fit the criteria.

As our goal is to analyze the individual parking behavior
of vehicles in a city, we process this survey data, and exclude
samples in which the mode of transportation does not cause a
parking event. Traveling on foot, by bicycle or by collective
public transportation (bus, train, subway) are some examples
of samples that were excluded. Table I lists the surveys, the
number of samples contained in each survey, the percentage
of these samples where the person traveled by car, and the
population size in each metropolitan area.

IV. PARKED VEHICLE STATISTICS

We begin by analyzing the complete 24-hour set of data in
each survey, as a whole, and deriving important characteristics
in this data. For improved presentation, we apply kernel
density estimators to the survey data, using Normal distri-
butions as the kernel function K(·), its bandwidth calculated

through the normal distribution approximation [10]. Figure 2
shows how the duration of parking events in a single day is
distributed, for each survey’s urban area.

Important observations can be drawn from Figure 2, the first
one being that the main characteristics of parking duration
are remarkably similar among all three cities. A second
observation is that a large mass of cars park for 3 hours or less
(the first peak from 0 to 180 minutes), which are then followed
by a series of smaller overlapping peaks that represent longer-
term parking.

Using the 180-minute mark as a classifier, we now analyze
the short-term and long-term parking event groups. Figure 3
plots the distribution of the times of day at which vehicles
first park, for the two groups, in the city of Chicago. The data
shows that short-term and long-term parking events are also
very distinct in terms of the time at which the car is parked.
Short-term parking (in red) is mostly consistent throughout the
daytime, while long-term parking (in blue) peaks substantially
between 8 and 9 A.M., with a second smaller peak occurring
again around 1 P.M.

The probability distribution of the time cars spend parked,
in Figure 2, is useful to vehicular research, and this 24-
hour aggregate of events can be fitted to known probability
distribution functions. We fitted the survey data in the Chicago
dataset, the largest of our three chosen surveys in terms of
sample size, to various well-known distributions and applied
the Kolmogorov-Smirnov test (which quantifies the distance
between two distributions) to judge the best fit.

The Nakagami probability distribution, a distribution related
to the Gamma distribution (that often models waiting times
between events), exhibited the best fit to the data shown in
Figure 2. Table II shows the Nakagami parameters of shape
(m) and spread (Ω) resulting from the fit, and the upper
and lower bounds of the Kolmogorov-Smirnov test. The error
between the empirical survey data and the fitted probability
distribution does not exceed 6%.

Having a single mathematical model capable of describing
the time vehicles will spend parked can be very useful –
however, we will now show how parking behaviors vary
throughout the day, which will prompt for more complex
models.

V. HOUR-BY-HOUR ANALYSIS

We know, intuitively, that parking trends vary significantly
along the day, matching people’s daily routines and habits. We

Survey Number of
samples

Car-only
samples

% Car
samples

Metro.
pop.

Atlanta 2011 119,478 81,863 68% 5.5 m
Knoxville 2008 15,313 11,535 75% 0.9 m

Chicago 2007 159,856 103,964 65% 9.5 m

Table I
CHARACTERISTICS OF TRAVEL SURVEY DATA
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Figure 2. Total time parked, in minutes – probability density functions for
the three survey sets.

saw already, in Figure 3, that most long-term parking happens
in the early hours of the morning, which coincides with the
hours at which most day jobs begin. In this section, we show
these trends in finer detail.

Figure 4a shows probability density functions of the total
time vehicles stay parked, in an hour-by-hour basis: for
example, the top figure pertains to the vehicles that parked
between 4:00 and 4:59. Once again, this analysis is repeated
for the three chosen surveys. Data begins at 4 A.M., as there
were insufficient data points in earlier hours for us to be able
to perform meaningful statistical analyses.

These detailed plots let us draw important conclusions. First,
we can see that the split between short-term and long-term
parking is only meaningful until 10 A.M. Past that hour,
long-term parking events almost cease to exist. Second, the
peak duration of long-term parking events grows shorter each
passing hour: at 4 A.M., long-term parking averages 10 hours
of parking time, but four hours later, at 8 A.M., the density
peaks at 7.5 hours. The data shows very clearly that the
earlier a vehicle is parked, the longer it will stay parked for.
And Figure 4a again shows that major parking trends are
consistent across different cities, though the Knoxville survey
data (the smallest of the three) may be sufficiently distinct
from Chicago and Atlanta to warrant further research into
smaller-sized urban areas.

For the purposes of vehicular network research, knowing
these distributions and the time at which a vehicle parked will

Parameters K-S Test

m Ω D+ D-

Nakagami
Distribution

0.282598 125,292 5.48% 5.97%

Table II
FITTING PARAMETERS AND KOLMOGOROV-SMIRNOV TEST RESULTS
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Figure 3. Time of day at which vehicles park, for short-term (under 3 hours)
and long-term (over 3 hours) parking.

allow one to estimate that vehicle’s parking duration, and how
likely it is that it will park for a short or a long period. But if
one cannot determine when a vehicle first parked, important
information can still be obtained.

Figure 4b shows the distribution of time that a parked
vehicle has left in that state (until it becomes mobile again),
at specific hours of the day. This data is obtained by taking a
snapshot of all parked cars at the beginning of the hour, and
determining how long each vehicle will remain parked for.
This way, knowing only the current time of day, one can scan
a car or a group of cars and take an informed estimate of when
these cars will be leaving their parking spots. The probability
density functions are similar to the ones in Figure 4a, with
important differences. The average remaining parked time on
each vehicle is higher, which means that, from a random
sample of cars that are parked, one is more likely to find cars
parking for a longer time. This effect propagates throughout
the day: at 1 P.M., while most new cars are parking for an
hour or less, the ones already parked will remain in that state
for up to 5 hours.

VI. DATA MODEL

We now attempt to obtain a mathematical model for a
car’s parking behavior, from the data that was just presented.
From the hourly data in Figure 4a, and by splitting the data
points at the first observable trough in the distribution, we
were able to heuristically determine that both short-term and
long-term parking can be accurately modeled with a dual
Gamma probability distribution. This also tells us that our
initial analysis of the whole data set – which, absent of
this classification, appeared to be best fit by a Nakagami
distribution – can be improved upon.

From Figure 4a we observe that the distribution of short-
term parking mimics an exponential distribution (with the dis-
tinction that very short parking events (e.g. under 1 minute) are
empirically rare), which is itself a special case of the Gamma
distribution. Long-term parking events resemble a normally-
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Figure 4. (a) Probability distribution of total time parked, grouped by the time of day at which parking occurred. (b) Distribution of remaining time until
parking ends, from global snapshots at the start of each hour.
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distributed random variable, and in fact a Gaussian model will
reasonably fit the data – however, such a distribution is defined
in R, which does not apply here as parking events cannot have
a negative duration. A Gamma distribution, defined in R+,
models long-term behavior equally well, and the resulting dual
model is substantially more tractable as we no longer need to
be concerned with negative tails in the normal distribution.

From our data, a car’s parking behavior can then be de-
scribed by a stochastic process X , indexed by discrete time t,
where each Xt is a continuous random variable representing
the time the vehicle will spend parked, when it parks at hour t.
The individual random variables follow a mixture distribution
of the aforementioned Gamma models. The first-order density
of X is given by

f(x, t) =D1,t ×
1

Γ(κs,t)θs,t
κs,t x

κs,t−1e
− x
θs,t

+D2,t ×
1

Γ(κl,t)θl,t
κl,t x

κl,t−1e
− x
θl,t

x > 0 , t = {0, 1, 2, . . . , 23} , (1)

where κs and θs are the shape and scale parameters of
the Gamma distribution that models short-term parking, and
κl and θl are their equivalent, but for the distribution that
models long-term events. Coefficients D1 and D2 weight each
distribution, as a valid density function must always integrate
to one (and therefore, D1+D2 = 1). The t subscript indicates
that the variable is specific to time t.

The first-order distribution FX(x) of the stochastic process
Xt is then given by

F (x, t) =D1,t

γ
(
κs,t,

x
θs,t

)
Γ(κs,t)

+D2,t

γ
(
κl,t,

x
θl,t

)
Γ(κl,t)

x > 0 , t = {0, 1, 2, . . . , 23} , (2)

where Γ(·) and γ(·) are the upper and lower incomplete

Gamma functions, respectively.
Knowing the hour t at which a car parked, the expected

time that the car will be parked for can be shown to be:

E[Xt, t = t] =

∫ ∞
0

xf(x, t = t)dx

= D1,tκs,tθs,t +D2,tκl,tθl,t , (3)

where κθ is, by definition, the expected value of the Gamma
distribution.

An equally important derivation is the probability that a car
still has n more hours left parked – useful if, e.g., one knows
that a car has been parked for t hours, and wishes to know
the probability that it will stay parked for at least n more
hours. Let ta be the time the car has been parked for, and
tp = ta + n the parked time we wish to know the probability
of. This conditional probability will be given by

P [Xt > tp|Xt > ta] =
1− FX(tp)

1− FX(ta)
, ta < tp

=
D1γ

(
κs,

tp
θs

)
Γ(κl) +D2γ

(
κl,

tp
θl

)
Γ(κs)− Γ(κl)Γ(κs)

D1γ
(
κs,

ta
θs

)
Γ(κl) +D2γ

(
κl,

ta
θl

)
Γ(κs)− Γ(κl)Γ(κs)

,

(4)

where {κs, θs, κl, θl, D1, D2} are specific to the time t when
the vehicle in question parked.

Data Fitting

We fit the hourly survey data points shown in Figure 4a
to the probabilistic model of Equation (1), through an
Expectation-Maximization (EM) routine. Due to the consid-
erable number of parameters (κs, θs, κl, θl, D1, D2), we opted
to augment the EM process with an iterative fitting routine,
drawing from concepts of evolutionary computation. As all
three surveys show similar parking trends, we fitted only the
data in the Chicago 2007 set, the largest of the three.
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Figure 6. Kolmogorov-Smirnov test results for the data against the general
and hourly models.

The fitting routine works by mutating one variable on
each iteration, and then determining the log-likelihood of the
resulting analytical model, to evaluate its goodness of fit to the
survey data. If a particular mutation improves the goodness of
fit, it is kept – if not, it is discarded. As the routine iterates, it
converges towards a set of variables that is a better fit to the
data. We applied this process to every hourly subset of data,
and drew the values of all variables once fitness stabilized. A
table with the raw fitting results can be found in the Appendix.

From the results of the fitting process, Figure 5 shows the
main characteristics of the short-term and long-term Gamma-
distributed parking behaviors, and their evolution over time.
Figure 5a plots the mean parking time which, as could be ob-
served earlier in Figure 4a, grows shorter throughout the day.
The variance of parking time also grows tighter throughout
the day, with brief increases at 9 A.M. and around 6 P.M.

Validation

To validate the hourly model that resulted from the fitting
process, we performed the Kolmogorov-Smirnov test on each
hourly snapshot of data. Figure 6 shows the {D−, D+} range
of the K-S test for both the general (daily) and the hourly
models. We can see that the hourly model fits the data with
errors not exceeding 10%, and stays under 5% error in many
of the hourly slices. In comparison, the general (daily) model
will undershoot and overshoot on most of the partitioned data.

VII. CONCLUSION

In this paper, we studied vehicular parking trends in
medium-sized urban areas. By analysing recent travel surveys
from the cities of Atlanta, Chicago, and Knoxville, we pro-
vide a probabilistic view of how individual cars park. We
first showed how parking events naturally separate into two
major groups of short-term and long-term parking; then, we
conducted an hour-by-hour analysis of the data, revealing how
trends evolve throughout the day. Modeling each event group
separately, we determined that short-term parking resembles

an exponential distribution, while long-term parking is pre-
dominantly gaussian in its nature.

Drawing from these observations, we developed an analyt-
ical model that accurately reflects vehicles’ parking behavior
in an urban area, along with important derivations that are of
particular relevance to vehicular network research that intends
to leverage parked cars. This is the topic of our future work
as well: to use these models to improve algorithms that enable
the use of parked cars as urban Road-Side Units.
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APPENDIX

Hour D1 D2 κs θs κl θl
3 0.5642 0.4358 1.272 298.7 15.00 43.73
4 0.4984 0.5016 1.059 338.4 15.95 40.14
5 0.4854 0.5146 1.252 156.1 20.09 30.06
6 0.4317 0.5683 1.195 127.5 22.50 25.24
7 0.3972 0.6028 1.057 111.6 23.27 21.96
8 0.5482 0.4518 1.079 137.8 22.36 21.46
9 0.8206 0.1794 0.9479 106.0 22.90 20.08

10 0.9543 0.0457 0.8640 85.58 19.39 20.07
11 0.8755 0.1245 0.9315 56.75 9.388 30.38
12 0.8000 0.2000 1.153 44.69 8.545 28.69
13 0.7631 0.2369 1.224 39.52 9.682 24.23
14 0.7523 0.2477 1.233 30.55 6.246 29.97
15 0.7061 0.2939 1.252 27.84 5.831 27.02
16 0.6995 0.3005 1.224 23.82 5.335 23.06
17 0.6407 0.3593 1.129 22.34 4.384 23.73
18 0.5669 0.4331 1.229 24.59 4.244 27.27
19 0.5071 0.4929 1.309 21.23 3.849 29.47
20 0.6390 0.3611 1.451 11.93 3.031 30.10
21 0.6277 0.3723 1.454 9.482 2.966 30.41
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