Improving Re-healing Time in Sparse Networks with Road-Side Units

Andre B. Reis Susana Sargento Ozan K. Tonguz

The issue at hand

- Market penetration is a limiting factor in the usefulness of a vehicular network
 - Initial deployments of VANETs will have to deal with low numbers of vehicles with radios
 - We're still many years away of having every vehicle equipped with a radio
- Even with 100% market penetration, sparse networks are bound to appear
 - Studies show late-night traffic is sparse and leads to disconnected VANETs
- Disconnection causes many issues: poor routing, protocol breakage, severe delays... which limit network's usefulness

How bad is sparse traffic?

- Dual-loop detector on Interstate-20 (I-20) freeway
- Inter-vehicle spacing follows an exponential distribution (for < 1000 veh/h)

How bad is sparse traffic?

Sparse Networks

low density of vehicles → severe disconnection →

Re-healing Time

- A way to transmit messages is via the opposite-lane vehicles
- Defined as 're-healing time'

Re-healing Time

no-RSU original model

Road-Side Units

- To improve connectivity, deploy fixed road-side units (RSUs) along the path
- RSUs can cost more, and be better positioned than on-board units ...

... which means better hardware, and better radio range than the vehicles

- Faster message transmission
- Access to WANs

Multi-gap re-healing time

accumulated re-healing time vs. distance to destination

Goal

- Develop models that characterize the re-healing time for:
 - Disconnected RSUs
 - Connected RSUs

- Model must allow input of essential parameters:
 - Vehicle and RSU radio range
 - Traffic density, vehicle speed
 - Distance between RSUs

Base Traffic Model

Disconnected RSUs

RSU as a radio bridge

 Re-healing time improved by including the average distance 'gained' by having the RSU transport the message

Disconnected RSUs

RSU as a message carrier

▶ RSU can carry the message faster than an opposite-lane vehicle

Connected RSUs

RSU is almost always the message carrier

Connected RSUs

Single vehicle

- ▶ Vehicle can be either in range or not in range of an RSU
- No delay when under direct coverage (transmission delay between RSUs is negligible)

Connected RSUs

Clustered vehicle

- Clusters larger than the gap between RSUs are always connected
- If cluster is smaller:
 - ▶ Cluster could be in range of an RSU no delay
 - ► Custer could be disconnected spatial delay

Multi-gap re-healing time

accumulated re-healing time vs. distance to destination

RSU density & radio range

10km accumulated re-healing time

Connected RSUs

Final Notes

- Disconnected RSUs are a poor choice
 - Even high density deployments of disconnected RSUs (Iper750m) yield very poor gains for the cost of deployment

- Connected RSUs bring much lower delay, and are the ideal choice
 - Only way to support delay-sensitive applications
 - Further hardware and infrastructure is required to connect RSUs

Improving the RSU's radio range yields more gains than deploying more RSUs

Thank you

Andre B. Reis — abreis@cmu.edu

Susana Sargento — susana@ua.pt

Ozan K.Tonguz — tonguz@ece.cmu.edu